we have modeled domain-wall motion in ferrimagnetic and ferromagnetic devices through micro magnetics and shown that the domain-wall velocity can be 2–2.5X faster in the ferrimagnetic device compared to the ferromagnetic device. We also show that this velocity ratio is consistent with recent experimental findings Because of such a velocity ratio, when such devices are used as synapses in the crossbar-array-based fully connected network, our system-level simulation here shows that a ferrimagnet-synapse-based crossbar offers 4X faster (for the same energy efficiency) or 4X more energy-efficient (for the same speed) learning when compared to the ferromagnet-synapse-based crossbar.
we have modeled domain-wall motion in ferrimagnetic and ferromagnetic devices through micro magnetics and shown that the domain-wall velocity can be 2–2.5X faster in the ferrimagnetic device compared to the ferromagnetic device. We also show that this velocity ratio is consistent with recent experimental findings Because of such a velocity ratio, when such devices are used as synapses in the crossbar-array-based fully connected network, our system-level simulation here shows that a ferrimagnet-synapse-based crossbar offers 4X faster (for the same energy efficiency) or 4X more energy-efficient (for the same speed) learning when compared to the ferromagnet-synapse-based crossbar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.