This study concerns STLTO compounds of the ferroelectric (Sr2Ta2O7)100-x(La2Ti2O7)x solid solution. The purpose is to produce the STLTO composition x = 1.65 as thin films by thermal oxidation of the corresponding oxynitride composition. Indeed, the combination of an STLTO oxide target with a dioxygen-rich reactive atmosphere during the sputtering deposition leads to Sr-deficient oxide thin films, shifting composition and structure from the perovskite to the tetragonal tungsten bronze type. An alternative synthesis pathway is to first deposit, under nitrogen-rich atmosphere, stoichiometric oxynitride films and produce, by thermal annealing under air, the stoichiometric oxide. For low oxidation temperatures ([550-600°C]), samples remain intact and display an oxide character but still contain a significant amount of nitrogen ; they could be described as intermediate phases containing nitrogen-nitrogen pairs as demonstrated by Raman. Dielectric characteristics of these original film materials are of interest with a tunability value of 26 % at 30 kV/cm (10 kHz).