A functional cytoplasmic male sterile (CMS) eggplant line carrying the cytoplasm of Solanum violaceum was developed in the past, but the fertility restoring genes (Rf-genes) were not identified. This work aimed to produce the CMS lines of three Hellenic eggplant cultivars (viz., 'Langada', 'Emi' and 'Tsakoniki') using the cytoplasm of S. violaceum and study the inheritance of the Rf-genes. The respective CMS eggplant lines were developed by the backcross method and examined for their fertility parameters. The results demonstrated that female fertility was not affected by the cytoplasm of S. violaceum. In contrast, the occurrence of three male fertility phenotypes (male sterile, male fertile and potentially male fertile) indicated that male fertility was affected by nuclear/cytoplasmic interactions. Male sterile plants were characterized by indehiscent anthers, low pollen viability and abnormal anther morphology. Male fertile plants formed dehiscent anthers with high pollen viability and normal morphology. Potentially male fertile plants initially formed dehiscent anthers, but in later stages formed exclusively indehiscent anthers. Male fertile plants were obtained in the advanced backcross populations of CMS 'Tsakoniki', but not in CMS 'Langada' and CMS 'Emi'. The genetic analysis of fertility restoration indicated that male fertility in the genetic background of cv. 'Tsakoniki' is controlled by one essential genetic locus, affected by a secondary modifying locus. Molecular analysis of cp-DNA and mt-DNA in the CMS lines indicated maternal inheritance of the cytoplasm organelles. Our findings demonstrate that the genotype of the eggplant parent can affect the expression of CMS as well as fertility restoration.