“…We can divide meta‐learning methods into three categories 140 : - Metric learning methods (i.e., MatchingNets, 113 ProtoNets, 114 RelationNets, 115 Graph neural network (GraphNN), 116 Ridge regression, 117 TransductiveProp, 118 Fine‐tuning Baseline, 119 URT, 120 DSN‐MR, 121 CDFS, 122 DeepEMD, 123 EPNet, 124 ACC + Amphibian, 125 FEAT, 126 MsSoSN + SS + SD + DD, 127 RFS, 128 RFS + CRAT, 129 IDA, 130 LR + ICI, 131 FEAT + MLMT, 132 BOHB, 133 CSPN, 134 SUR, 135 SKD, 136 TAFSSL, 137 TRPN, 138 and TransMatch 139 ) learn a similarity space in which learning is particularly efficient for few‐shot examples.
- Memory network methods (i.e., Meta Networks, 103 TADAM, 104 MCFS, 105 and MRN 106 ) learn to store “experience” when learning seen tasks and then generalize it to unseen tasks.
…”