Roller drafting is an indispensable and fundamental procedure in attenuating the sliver to an adequate linear density during the spinning process. In this study, the drafting dynamic process was reflected in the arrangement containing hooked fibers and straight fibers, and the fiber straightness in the drafting zone in real-time. The drafting process was implemented from the initiation of the sliver head moving into the drafting zone to the achievement of the straightening process for all fibers in the sliver. The developed model demonstrated that the simulated weight distributions of various fibers, including the total fibers, back fibers, front fibers and floating fibers, were more in line with the actual results than the simulative ones based on the previous drafting model with the simulation of the straight fiber arrangement in the sliver. In conclusion, the drafting model with the application of the hooked fiber arrangement was effective and precise in quantizing the drafting process of a sliver with many hooked fibers, such as a cotton card sliver. Moreover, the drafting model can offer the theoretical foundation for setting the drafting parameters from the perspective of the distributions of slow-floating fibers and fast-floating fibers.