Data on energy intake and the effects of fluctuations in fruit availability on energy intake for African apes, and orangutans in mast-fruiting habitats, indicate that orangutans may face greater energetic challenges than do their African counterparts. Comparable data on orangutans in nonmasting forests, which experience lower fluctuations in fruit availability, have been lacking, however, complicating interpretations. We conducted a 46-mo study of orangutan energetics in the nonmasting Sabangau peat-swamp forest, Indonesian Borneo. Sabangau orangutans experienced periods of negative energy balance apparently even longer than in mastfruiting habitats, as indicated by comparisons of observed energy intake with theoretical requirements and analysis of urinary ketones. Daily energy intake was positively related to fruit availability in flanged males, but not in adult females or unflanged males. This may represent different foraging strategies between age-sex classes and suggests that fruit availability is not always an accurate indicator of ape energy intake/balance. Urinary ketone levels were not generally related to fruit availability, daily energy intake, day range, or party size. This is probably due to low energy intake, and consequently high ketone production, throughout much of the study period. Comparisons with published results on African apes support the hypothesis that orangutans are unique among hominoids in regularly experiencing prolonged periods of negative energy balance. This has important effects on orangutan behavior and socioecology, and has likely been a key factor driving the evolutionary divergence of orangutans and African apes.