Whey protein denaturation and aggregation have long been areas of research interest to the dairy industry, having significant implications for process performance and final product functionality and quality. As such, a significant number of analytical techniques have been developed or adapted to assess and characterize levels of whey protein denaturation and aggregation, to either maximize processing efficiency or create products with enhanced functionality (both technological and biological). This review aims to collate and critique these approaches based on their analytical principles and outline their application for the assessment of denaturation and aggregation. This review also provides insights into recent developments in process analytical technologies relating to whey protein denaturation and aggregation, whereby some of the analytical methods have been adapted to enable measurements in‐line. Developments in this area will enable more live, in‐process data to be generated, which will subsequently allow more adaptive processing, enabling improved product quality and processing efficiency. Along with the applicability of these techniques for the assessment of whey protein denaturation and aggregation, limitations are also presented to help assess the suitability of each analytical technique for specific areas of interest.