4] Spann, R.: A two-dimensional correlation property of pseudorandom maximal length sequences. Proc. IEEE, VoL S3 (1965) p. 2137. [51 Fenimore, E.E.; Cannon, T.M.: Coded aperture imaging with uniformly redundant arrays. Applied Optics, VoL 17 (1978) pp. 337-347. [6] Sckraeder, M.R.: Diffuse sound reflection by maximum-fength sequences. J. Aconst Soc. Am, VoL 57 (1975) pp. 149-150. [7] Goby, M.J.E.: The meritfactor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory, VoL IT-28 (1982) pp. 543-549. [8] Mac Williams, F. J.; Sloane. N. J. A.: Pseudo-random sequences and arrays. Proc. IEEE, VoL 64 (1976) pp. 1715-1729. [9] Antweiler, M.; Bömer, L.; Luke, H.D.: Perfect Ternary Arrays. Proposed for publication in IEEE Trans. Inform. Theory. [10] Luke, H. D.: Sequences and arrays with perfect periodic correlation. IEEE Trans. Aerosp. Electron. Syst., VoL AES-24 (1988) pp. 287-294. [11] Calabro, D.; Wolf, J.K.: On the synthesis of two-dimensional arrays »im desirable correlation properties. Inform. Contr, VoL 11 (1968) pp. 537-560. [12] Chan, Y.K.; Sin, M.K.; Tong. P.: Two-dimensional binar) arrays with good autocorrelation. Inform, a. Contr., VoL 42 (1979) pp. 125-130. [13] Bömer. L.; Antweikr, M.: Perfect binary arrays with 36 elements. Electron. Lett, VoL 23 (1987) pp. 730-732. [14] Bömer, L.; Antweiler, M.: Two-dimensional perfect binary arrays with 64 dements. Accepted for publication in IEEE Trans. Information Theory. [15] Wild. P.: Infinite families of perfect binary arrays. Electron. Lett, VoL 24 (1988) pp. 845-847. [16] Jedwab, J.; Mitchell, C: Construction new perfect binary arrays. Electron. Lett, VoL 24 (1988) pp. 650-652. [17] Luke, H.D.; Bömer, L.: Perfect binary arrays. To be published in: Signal Processing, VoL 16 (1989). [18] Bamnen, L.D.: Cyclic difference sets. Berlin: Springer Verlag, 1971. [19] Kopiknich, L. E.: On perfect binary arrays. Electron. Lett, VoL 24 (1988) pp. [20] [21] Lemple, A'.; Cohn, M.; Eastman, W.L.: A class of balanced binary quences with optimal autocorrelation properties. IEEE Trans.
Abstract:The eigenfunction expansion method is used to solve the field problem of rectangular-coaxial lines and step discontinuities. The programme package developed has been applied to design several TEM-branchline couplers. The performance measured coincides well with the theoretical predictions.
Übersicht:Orthpgonalentwicklung nach Eigenfunktion wird zur Lösung der Randwertprobleme in rechteckkoaxialen Leitungen und Strukturen mit sprunghafter Breitenänderung angewandt. Entsprechende Programme sind getestet und erfolgreich zum Entwurf von mehreren TEM-Branch-Line-Kopplern eingesetzt worden. Die gemessenen Kopplercharakteristiken stimmen gut mit den theoretischen Voraussagen überein.
Für die Dokumentation :Orthogonalentwicklung / rechteck-koaxiale Leitung / TEM-Leitung / Leitungsdiskontinuität/ TEM-Branch-Line-Koppler / Filter