Probabilistic amplitude shaping (PAS) is a coded modulation strategy in which constellation shaping and channel coding are combined. PAS has attracted considerable attention in both wireless and optical communications. Achievable information rates (AIRs) of PAS have been investigated in the literature using Gallager’s error exponent approach. In particular, it has been shown that PAS achieves the capacity of the additive white Gaussian noise channel (Böcherer, 2018). In this work, we revisit the capacity-achieving property of PAS and derive AIRs using weak typicality. Our objective is to provide alternative proofs based on random sign-coding arguments that are as constructive as possible. Accordingly, in our proofs, only some signs of the channel inputs are drawn from a random code, while the remaining signs and amplitudes are produced constructively. We consider both symbol-metric and bit-metric decoding.