In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, geneticallydiverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16 C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or