Metabolomics, the large-scale study of the metabolic complement of the cell [1][2][3] , is a mature science that has been practiced for over 20 years 4 . Indeed, it is now a commonly used experimental systems biology tool with demonstrated utility in both fundamental and applied aspects of plant, microbial and mammalian research [5][6][7][8][9][10][11][12][13][14][15] . Among the many thousands of studies published in this area over the last 20 years, notable highlights [5][6][7][8]10,11,16 are briefly described in Supplementary Note 1.Despite the insight afforded by such studies, the nature of metabolites, particularly their diversity (in both chemical structure and dynamic range of abundance 9,12 ), remains a major challenge with regard to the ability to provide adequate coverage of the metabolome that can complement that achieved for the genome, transcriptome and proteome. Despite these comparative limitations, enormous advances have been made with regard to the number of analytes about which accurate quantitative information can be acquired, and a vast number of studies have yielded important biological information and biologically active metabolites across the kingdoms of life 14 . We have previously estimated that upwards of 1 million different metabolites occur across the tree of life, with between 1,000 and 40,000 estimated to occur in a single species 4 .
Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.
Swollenin, a protein first characterized in the saprophytic fungus Trichoderma reesei, contains an N-terminal carbohydratebinding module family 1 domain (CBD) with cellulose-binding function and a C-terminal expansin-like domain. This protein was identified by liquid chromatography-mass spectrometry among many other cellulolytic proteins secreted in the coculture hydroponics medium of cucumber (Cucumis sativus) seedlings and Trichoderma asperellum, a well-known biocontrol agent and inducer of plant defense responses. The swollenin gene was isolated and its coding region was overexpressed in the same strain under the control of the constitutive pki1 promoter. Trichoderma transformants showed a remarkably increased ability to colonize cucumber roots within 6 h after inoculation. On the other hand, overexpressors of a truncated swollenin sequence bearing a 36-amino acid deletion of the CBD did not differ from the wild type, showing in vivo that this domain is necessary for full protein activity. Root colonization rates were reduced in transformants silenced in swollenin gene expression. A synthetic 36-mer swollenin CBD peptide was shown to be capable of stimulating local defense responses in cucumber roots and leaves and to afford local protection toward Botrytis cinerea and Pseudomonas syringae pv lachrymans infection. This indicates that the CBD domain might be recognized by the plant as a microbe-associated molecular pattern in the Trichoderma-plant interaction.
SUMMARY Peptaibols, the products of non-ribosomal peptide synthetases (NRPS), are linear peptide antibiotics produced by Trichoderma and other fungal genera. Trichoderma virens strain Gv29-8, a well-known biocontrol agent and inducer of plant defence responses, produces three lengths of peptaibols, 11, 14 and 18 residues long, with several isoforms of each. Disruption of the NRPS gene, tex1, encoded by a 62.8-kb uninterrupted open reading frame, results in the loss of production of all forms of 18-residue peptaibols. Tex1 is expressed during all Trichoderma developmental stages (germinating conidia, sporulating and non-sporulating mycelia) examined on solid media. Expression analysis by reverse transcriptase PCR shows that in Gv29-8 wild-type the abundance of tex1 transcript is greater during co-cultivation with cucumber seedling roots than when grown alone. Cucumber plants co-cultivated with T. virens strains disrupted in tex1 show a significantly reduced systemic resistance response against the leaf pathogen Pseudomonas syringae pv. lachrymans, and reduced ability to produce phenolic compounds with inhibitory activity to the bacteria as compared with plants grown in the presence of wild-type. Two synthetic 18-amino-acid peptaibol isoforms (TvBI and TvBII) from Gv29-8 when applied to cucumber seedlings through the transpiration stream can alone induce systemic protection to the leaf pathogenic bacteria, induce antimicrobial compounds in cucumber cotyledons and up-regulate hydroxyperoxide lyase (hpl), phenylalanine ammonia lyase (pal1) and peroxidase (prx) gene expression. These data strongly suggest that the 18mer peptaibols are critical in the chemical communication between Trichoderma and plants as triggers of non-cultivar-specific defence responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.