BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobinlike elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach. Maize seedlings were inoculated with T. virens Gv29-8 wild type and transformants in which SM1 was disrupted or constitutively overexpressed in a hydroponic system or in soil-grown maize seedlings challenged with the pathogen Colletotrichum graminicola. We show that similar to dicot plants, colonization of maize roots by T. virens induces systemic protection of the leaves inoculated with C. graminicola. This protection was associated with notable induction of jasmonic acidand green leaf volatile-biosynthetic genes. Neither deletion nor overexpression of SM1 affected normal growth or development of T. virens, conidial germination, production of gliotoxin, hyphal coiling, hydrophobicity, or the ability to colonize maize roots. Plant bioassays showed that maize grown with SM1-deletion strains exhibited the same levels of systemic protection as nonTrichoderma-treated plants. Moreover, deletion and overexpression of SM1 resulted in significantly reduced and enhanced levels of disease protection, respectively, compared to the wild type. These data together indicate that T. virens is able to effectively activate systemic disease protection in maize and that the functional Sm1 elicitor is required for this activity.
The Fungal Genetics Stock Center (FGSC) was established in 1960 to ensure that important strains used in early genetics research were available to subsequent generations of fungal geneticists. Originally, only mutant strains were held. At present, any organism that has had its genome sequenced is a genetic system and so the FGSC has added many new organisms. The FGSC is well integrated in its core community and, as research came to depend on cloned genes, vectors and gene libraries, the FGSC included these materials. When the community expanded to include plant and human pathogens, the FGSC adopted these systems as well. Wild isolates from around the world have also proven instrumental in answering important questions. The FGSC holds tremendous diversity of the Neurospora species, which form the core of the collection. The growth in the number of strains distributed illustrates the growth in research on fungi. Because of its position near the centre of the fungal genetics effort, the FGSC is also the first to see trends in research directions. One recent example is the 300% jump in requests for strains of Neurospora crassa carrying a mutation that makes them sensitive to high salt concentration. These strains were seldom requested over many years, but became among our most popular resources following the demonstration of their utility in studying fungicide resistance. This exemplifies why materials need to be preserved without regard to their immediate perceived value and reinforces the need for long-term support for preservation of a broad variety of genetic resources.
The fungus Trichoderma virens is a ubiquitous soil saprophyte that has been applied as a biological control agent to protect plants from fungal pathogens. One mechanism of biocontrol is mycoparasitism, and T. virens produces antifungal compounds to assist in killing its fungal targets. Peptide synthetases produce a wide variety of peptide secondary metabolites in bacteria and fungi. Many of these are known to possess antibiotic activities. Peptaibols form a class of antibiotics known for their high ␣-aminoisobutyric acid content and their synthesis as a mixture of isoforms ranging from 7 to 20 amino acids in length. Here we report preliminary characterization of a 62.8-kb continuous open reading frame encoding a peptaibol synthetase from T. virens. The predicted protein structure consists of 18 peptide synthetase modules with additional modifying domains at the N-and C-termini. T. virens was shown to produce a mixture of peptaibols, with the largest peptides being 18 residues. Mutation of the gene eliminated production of all peptaibol isoforms. Identification of the gene responsible for peptaibol production will facilitate studies of the structure and function of peptaibol antibiotics and their contribution to biocontrol activity.
SUMMARY Peptaibols, the products of non-ribosomal peptide synthetases (NRPS), are linear peptide antibiotics produced by Trichoderma and other fungal genera. Trichoderma virens strain Gv29-8, a well-known biocontrol agent and inducer of plant defence responses, produces three lengths of peptaibols, 11, 14 and 18 residues long, with several isoforms of each. Disruption of the NRPS gene, tex1, encoded by a 62.8-kb uninterrupted open reading frame, results in the loss of production of all forms of 18-residue peptaibols. Tex1 is expressed during all Trichoderma developmental stages (germinating conidia, sporulating and non-sporulating mycelia) examined on solid media. Expression analysis by reverse transcriptase PCR shows that in Gv29-8 wild-type the abundance of tex1 transcript is greater during co-cultivation with cucumber seedling roots than when grown alone. Cucumber plants co-cultivated with T. virens strains disrupted in tex1 show a significantly reduced systemic resistance response against the leaf pathogen Pseudomonas syringae pv. lachrymans, and reduced ability to produce phenolic compounds with inhibitory activity to the bacteria as compared with plants grown in the presence of wild-type. Two synthetic 18-amino-acid peptaibol isoforms (TvBI and TvBII) from Gv29-8 when applied to cucumber seedlings through the transpiration stream can alone induce systemic protection to the leaf pathogenic bacteria, induce antimicrobial compounds in cucumber cotyledons and up-regulate hydroxyperoxide lyase (hpl), phenylalanine ammonia lyase (pal1) and peroxidase (prx) gene expression. These data strongly suggest that the 18mer peptaibols are critical in the chemical communication between Trichoderma and plants as triggers of non-cultivar-specific defence responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.