The fungus Trichoderma virens is a ubiquitous soil saprophyte that has been applied as a biological control agent to protect plants from fungal pathogens. One mechanism of biocontrol is mycoparasitism, and T. virens produces antifungal compounds to assist in killing its fungal targets. Peptide synthetases produce a wide variety of peptide secondary metabolites in bacteria and fungi. Many of these are known to possess antibiotic activities. Peptaibols form a class of antibiotics known for their high ␣-aminoisobutyric acid content and their synthesis as a mixture of isoforms ranging from 7 to 20 amino acids in length. Here we report preliminary characterization of a 62.8-kb continuous open reading frame encoding a peptaibol synthetase from T. virens. The predicted protein structure consists of 18 peptide synthetase modules with additional modifying domains at the N-and C-termini. T. virens was shown to produce a mixture of peptaibols, with the largest peptides being 18 residues. Mutation of the gene eliminated production of all peptaibol isoforms. Identification of the gene responsible for peptaibol production will facilitate studies of the structure and function of peptaibol antibiotics and their contribution to biocontrol activity.
h i g h l i g h t sThermal storage for solar thermal power using phase change materials is reviewed. Various phase change materials and manufacturing techniques are surveyed. Mathematical modeling and simulations to latent heat energy storage is reviewed. Integration of a PCM-based TES unit into a power generation system is discussed. Cost analysis of thermocline latent heat thermal storage systems is reviewed. Keywords: Concentrated solar power (CSP) Thermal energy storage (TES) Phase change material (PCM) Latent heat a
b s t r a c tThe objective of this paper is to review the recent technologies of thermal energy storage (TES) using phase change materials (PCM) for various applications, particularly concentrated solar thermal power (CSP) generation systems. Five issues of the technology will be discussed based on a survey to the state-of-the-art development and understandings. The first part is about various phase change materials (PCM) in thermal storage applications and recent development of PCM encapsulation technologies. The second is the current status of research and application of latent heat storage systems in CSP plants. The third is the mathematical modeling and numerical simulations to the phenomenon of latent heat thermal storage. The fourth is about the issues of integration of a PCM-based TES unit into a power generation system and the operation. The last part is a discussion about the cost issues and comparison between sensible and latent heat TES systems. The surveyed information will be very helpful to researchers and engineers in energy storage industry and particularly solar thermal power industry.
Abstract:Methanol steam reforming is a promising technology for producing hydrogen for onboard fuel cell applications. The methanol conversion rate and the contents of hydrogen, carbon monoxide and carbon dioxide in the reformate, significantly depend on the reforming catalyst. Copper-based catalysts and palladium-based catalysts can effectively convert methanol into hydrogen and carbon dioxide. Copper and palladium-based catalysts with different formulations and compositions have been thoroughly investigated in the literature. This work summarized the development of the two groups of catalysts for methanol steam reforming. Interactions between the activity components and the supports as well as the effects of different promoters were discussed. Compositional and morphological characteristics, along with the methanol steam reforming performances of different Cu/ZnO and Pd/ZnO catalysts promoted by Al 2 O 3 , CeO 2 , ZrO 2 or other metal oxides, were reviewed and compared. Moreover, the reaction mechanism of methanol steam reforming over the copper based and palladium based catalysts were discussed.
Bioprinting is an additive manufacturing technology with great potential in medical applications. Among available bioprinting techniques, laser-assisted bioprinting (LAB) is a promising technique due to its high resolution, high cell viability, and the capability to deposit high-viscousity bioink. These characteristics allow the LAB technology to control cells precisely to reconstruct living organs. Recent developments of LAB technologies are reviewed in this paper, covering various designs of LAB printers, re-search progresses in energy-absorbing layer (EAL), the physical phenomenon that triggers the printing process in terms of bubble formation and jet development, printing process parameters, and major factors related to the post-printing cell viability. The latest studies on LAB technologies are highlighted, expounding their advantages and disadvantages, and some potential applications are presented. The potential technical challenges and future research trends for LAB technologies are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.