We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant -expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double--barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydratebinding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant -expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant-bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function.family 45 endoglucanase ͉ lytic transglycosylase ͉ peptidoglycan ͉ plant cell wall ͉ plant-microbe interactions B acterial and plant cell walls have similar functions but distinctive structures. Bacterial peptidoglycan forms a network of linear polysaccharide strands of alternating Nacetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues cross-linked by short polypeptides. As a giant bag-shaped sacculus, peptidoglycan expands via the action of endopeptidases, amidases, and lytic transglycosylases that cleave covalent bonds and allow insertion of new subunits (1). In contrast, the growing plant cell wall is formed from a scaffold of cellulose microfibrils tethered together by branched glycans such as xyloglucan or arabinoxylan that bind noncovalently to cellulose surfaces. The cellulose-hemicellulose network enlarges via polymer slippage or ''creep,'' mechanically powered by turgorgenerated forces in the cell wall and catalyzed by expansins and other wall-loosening agents (2).Expansins are known principally from plants where they function in cell enlargement and other developmental events requiring cell wall loosening (3). Canonical expansins are small proteins (Ϸ26 kDa, Ϸ225 aa) consisting of 2 compact domains: D1 has a fold similar to that of family 45 glycosyl hydrolases (GH45), and D2 has a -sandwich fold. Expansins facilitate cell wall creep without breakdown of wall polymers (3-5). Plant expansins consist of 2 major families: ␣-expansins, which preferentially loosen the cell walls of dicots compa...