We discuss lepton number violating processes in the context of long-baseline neutrino oscillations. We summarise and compare neutrino flavour oscillations in quantum mechanics and quantum field theory, both for standard oscillations and for those that violate lepton number. When the active neutrinos are Majorana in nature, the required helicity reversal gives a strong suppression by the neutrino mass over the energy, (m ν /E ν ) 2 . Instead, the presence of non-standard lepton number violating interactions incorporating right-handed lepton currents at production or detection alleviate the mass suppression while also factorising the oscillation probability from the total rate. Such interactions arise from dimension-six operators in the low energy effective field theory of the Standard Model. We derive general and simplified expressions for the lepton number violating oscillation probabilities and use limits from MINOS and KamLAND to place bounds on the interaction strength in interplay with the unknown Majorana phases in neutrino mixing. We compare the bounds with those from neutrinoless double beta decay and other microscopic lepton number violating processes and outline the requirements for future short-and long-baseline neutrino oscillation experiments to improve on the existing bounds. * patrick.bolton.17@ucl.ac.uk