We present a system called Smyth for program sketching in a typed functional language whereby the concrete evaluation of ordinary assertions gives rise to input-output examples, which are then used to guide the search to complete the holes. The key innovation, called live bidirectional evaluation, propagates examples łbackwardž through partially evaluated sketches. Live bidirectional evaluation enables Smyth to (a) synthesize recursive functions without trace-complete sets of examples and (b) specify and solve interdependent synthesis goals. Eliminating the trace-completeness requirement resolves a significant limitation faced by prior synthesis techniques when given partial specifications in the form of input-output examples. To assess the practical implications of our techniques, we ran several experiments on benchmarks used to evaluate Myth, a state-of-the-art example-based synthesis tool. First, given expert examples (and no partial implementations), we find that Smyth requires on average 66% of the number of expert examples required by Myth. Second, we find that Smyth is robust to randomly-generated examples, synthesizing many tasks with relatively few more random examples than those provided by an expert. Third, we create a suite of small sketching tasks by systematically employing a simple sketching strategy to the Myth benchmarks; we find that user-provided sketches in Smyth often further reduce the total specification burden (i.e. the combination of partial implementations and examples). Lastly, we find that Leon and Synqid, two state-of-the-art logic-based synthesis tools, fail to complete several tasks on which Smyth succeeds. CCS Concepts: • Software and its engineering → General programming languages; Programming by example; Search-based software engineering; Automatic programming; • Theory of computation → Type theory.