Massive open online courses (MOOCs) have gained enormous popularity in recent years and have attracted learners worldwide. However, MOOCs face a crucial challenge in the high dropout rate, which varies between 91%-93%. An interplay between different learning analytics strategies and MOOCs have emerged as a research area to reduce dropout rate. Most existing studies use click-stream features as engagement patterns to predict at-risk students. However, this study uses a combination of click-stream features and the influence of the learner’s friends based on their demographics to identify potential dropouts. Existing predictive models are based on supervised learning techniques that require the bulk of hand-labelled data to train models. In practice, however, scarcity of massive labelled data makes training difficult. Therefore, this study uses self-training, a semi-supervised learning model, to develop predictive models. Experimental results on a public data set demonstrate that semi-supervised models attain comparable results to state-ofthe-art approaches, while also having the flexibility of utilizing a small quantity of labelled data. This study deploys seven well-known optimizers to train the self-training classifiers, out of which, Stochastic Gradient Descent (SGD) outperformed others with the value of F1 score at 94.29%, affirming the relevance of this exposition.