This study evaluates the influence of repeated artificial drought stress on the fine root characteristics -including ectomycorrhizae -of Norway spruce [Picea abies (L.) Karst]. The experimental site consisted of two plots in a mature spruce monoculture stand. The water regime at parts of both plots was regulated by shelters and an isolation trench during vegetation season (spring to autumn) since 2010. Root samples were collected during autumn in 2010, 2012, and 2013. Root analyses revealed the effect of drought stress on mycorrhizal root tips changed over time. While a density of active mycorrhizae was about 34% lower in drought-stressed areas compared to nonstressed (control) areas in 2010, it increased by 15% in 2012 and by 22% in 2013 over both plots. We observed the less pronounced effect of drought on a proportion of active mycorrhizae, but it generally followed the pattern of active mycorrhizae density. The density of nonactive mycorrhizae was not influenced by drought but significantly fluctuated during the course of the experiment. Other root characteristics such as the dry mass of fine roots (< 1 mm), the specific length of fine roots (< 1 mm) and the composition of the ectomycorrhizal community (primarily dominated by Amphinema byssoides, Tylospora fibrillosa, Tylopilus felleus, and Cenococcum geophilum) were also not significantly influenced by drought. Our results indicate the ability of Norway spruce fine roots to compensate for repeated drought stress of the intermediate intensity.