Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching >5°C above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during re-colonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus Central Red Sea (CRS) Stylophora pistillata corals using the Coral Bleaching Automated Stress System (CBASS) to run a series of standardized acute thermal stress assays. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7°C above MMM). However, absolute thermal thresholds of CRS corals were on average 3°C above those of GoA corals. To explore the mechanistic underpinnings, we determined gene expression response and microbiome dynamics of coral holobiont compartments. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals versus a remarkably muted response in corals from the CRS. This pattern was recapitulated in the algal symbionts that showed site-specific genetic differentiation. Concomitant to this, a subset of coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression, i.e. front-loading, in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed consistent assemblages, indicating distinct microbial response patterns. Our work demonstrates distinct patterns underlying thermal tolerance across spatial scales, even for the same species and ocean basin. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that affect the response of coral populations to ocean warming.