In this paper, we experiment with a small working model (SWM), where we can inject faults and learn the intelligence about the system, then scale up this fault models to monitor the condition of an actual/complex system, without injecting faults in the actual system. We refer to this approach as scalable fault models. We check the effectiveness of our approach using 3 kVA and 5 kVA synchronous generators to emulate the behaviour of SWM and actual system, respectively. We linearise the features from the SWM and actual system in a higher-dimensional space using locality constrained linear coding (LLC) to make them linearly separable. Subsequently, the systemindependent features are selected using principal component analysis (PCA) to make the fault models robust across the systems. Support vector machine (SVM) is used as a back-end classifier. Experiments and results show that proposed LLC-PCA system outperforms the baseline system.