A novel high precision spatial positioning method utilizing the electromagnetic momentum, i.e., Electromagnetic Momentum Positioning (EMP), is proposed in this paper. By measuring the momentum of the electromagnetic field around the small current loop, the relative position between the sensor and the current loop is calculated. This method is particularly suitable for the application of close-range and high-precision positioning, e.g., data gloves and medical devices in personal healthcare, etc. The simulation results show that EMP method can give a high accuracy with the positioning error less than 1 mm, which is better than the traditional magnetic positioning devices with the error greater than 1 cm. This method lays the foundation for the application of data gloves to meet the accurate positioning requirement, such as the high precision interaction in Virtual Reality (VR), Augmented Reality (AR) and personal wearable devices network.