2014
DOI: 10.1016/s1665-6423(14)71662-1
|View full text |Cite
|
Sign up to set email alerts
|

Fingerprint Recognition by Multi-objective Optimization PSO Hybrid with SVM

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
3

Year Published

2016
2016
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 12 publications
0
4
0
3
Order By: Relevance
“…But when the quality of fingerprinted image is poor is extremely unreliable. There many work that lets Minutia extraction by using different classifier as SVM [36], Bayes [37], Neuron, Fuzzy, etc. Table 1 resumes the most important contributions.…”
Section: A Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…But when the quality of fingerprinted image is poor is extremely unreliable. There many work that lets Minutia extraction by using different classifier as SVM [36], Bayes [37], Neuron, Fuzzy, etc. Table 1 resumes the most important contributions.…”
Section: A Discussionmentioning
confidence: 99%
“…[32] 4.18% 9.93% OMER SAEED method [33] 1,12% Not indicated Ying HAO method [34] 1% 2.5% Jiong Zang method [35] 0.04% 1.31% Ching-Tang and al. method [36] 0.5% 0% Mossaad and al. method [27] 0% 0.02%…”
Section: A Discussionmentioning
confidence: 99%
“…Arsitektur ini dapat memanfaatkan informasi struktural pada data yang membantu dalam membedakan kelas-kelas tertentu. Metode SVM juga memberikan kinerja tinggi seperti pada riset oleh Ching Tang dan Chia Shing (2014) menghasilkan error rate sebesar 0.5% [7]. Pada penelitian ini terdapat citra sidik jari yang memiliki posisi pengambilan tidak stabil akibat human error.…”
Section: Abstrakunclassified
“…Filter Gabor bekerja sebagai filter bandpass untuk distribusi frekuensi spasial lokal, mencapai resolusi optimal dalam domain baik spasial dan frekuensi [7]. Berikut persamaan dari filter Gabor:…”
Section: Studi Literatur 1) Filter Gaborunclassified
“…In this study, for pipeline leakage accident identification and leakage point localization, an SVM‐based model is combined with the particle swarm optimization (PSO) algorithm to find the best parameter combination. PSO, as an evolutionary computation technique, is a population‐based optimization tool inspired by the social behavior among individuals. Recently, several studies on PSO theories and applications have been reported.…”
Section: Introductionmentioning
confidence: 99%