Electroless nickel plating with a nanofinished surface is used in space mirrors, automobile parts, aircraft components, optical instruments, and electronic equipment. Finishing of these components using conventional finishing techniques is limited due to size, shape, material, and process constraints. This work reports the nanofinishing of electroless nickel-plated surfaces using a magnetorheological finishing process where the surfaces are pre-treated with chemicals. The chemicals used in this work are hydrogen peroxide (H2O2) and hydrofluoric acid (HF). The effect of exposure time and concentration on the microhardness and roughness is studied to understand the surface chemistry after chemical treatment. The hydrogen peroxide forms a passivated layer, and it helps in easy material removal. Hydrofluoric acid improves surface quality and also helps in the removal of contaminants. The finished surface is characterized to understand the effect of chemical treatment on the finishing rate and surface topography. Normal and tangential forces are mainly affected by the hardness and surface condition after the chemical treatment. The best combination of parameters (chemical treatment with 1% HF for 30 min) was obtained and finishing was carried out to obtain a nanofinished surface with its areal surface roughness (Sa) reduced to 10 nm.