Among the large family of emergent pharmaceutical contaminants, we find acetaminophen (ACE) that critically needs to be removed from wastewater. Advanced Oxidation Process (AOP) have proven effective in the degradation of large molecular contaminants from water. To the best of our knowledge this is the first study reported on the degradation of ACE based on immobilized TiO2 thin films. In an effort to increase the understanding of the efficiency of the degradation process, an in-depth investigation of the effects of the structure, i.e., coating layers and the amount of surface, i.e., number of coated slides used, is needed. Transparent, anatase-form TiO2 thin films were prepared via the sol-gel method (Rawal, S., S. Buer, J. R. Sanders, and P. E. Arce. 2021. “Photocatalytic Degradation of Acetaminophen from Water Solutions Via Thin Films. Part I: Synthesis and Characterization of TiO2 Thin Films.” International Journal of Reactor Engineering [Accepted]) and deposited onto glass microscope slides using a novel spraying technique, with coatings ranging from one to 10 layers. This contribution summarizes the effect of several key factors including initial concentration of the ACE, the number of coating layers (6, 8, and 10) on the glass slides and the number (4 and 6) of slides on the degradation levels for three selected media, e.g., acid, neutral and base. Comparisons studies, supported by statistical analysis between two different sets (4 and 6) of slides with discussion of potential physical-chemical reasons behind the behaviors are reported. Finally, global, first order kinetic rate constants are also reported for the different conditions used in the investigation. Although further research would be needed, in general the results are promising for the potential degradation of ACE in continuous flow systems by using immobilized TiO2 on surfaces as thin films.
Electroless nickel plating with a nanofinished surface is used in space mirrors, automobile parts, aircraft components, optical instruments, and electronic equipment. Finishing of these components using conventional finishing techniques is limited due to size, shape, material, and process constraints. This work reports the nanofinishing of electroless nickel-plated surfaces using a magnetorheological finishing process where the surfaces are pre-treated with chemicals. The chemicals used in this work are hydrogen peroxide (H2O2) and hydrofluoric acid (HF). The effect of exposure time and concentration on the microhardness and roughness is studied to understand the surface chemistry after chemical treatment. The hydrogen peroxide forms a passivated layer, and it helps in easy material removal. Hydrofluoric acid improves surface quality and also helps in the removal of contaminants. The finished surface is characterized to understand the effect of chemical treatment on the finishing rate and surface topography. Normal and tangential forces are mainly affected by the hardness and surface condition after the chemical treatment. The best combination of parameters (chemical treatment with 1% HF for 30 min) was obtained and finishing was carried out to obtain a nanofinished surface with its areal surface roughness (Sa) reduced to 10 nm.
The utilization of titanium dioxide (TiO2) photocatalysis for water and air purification is a frequently used method due to TiO2 having properties making it chemically inert, highly cost-effective, abundant, non-toxic, and environmentally-friendly. In an effort to increase the efficiency of the degradation process, an in-depth understanding of the effects of the structure and number of thin film coatings is needed. Transparent, anatase-form titanium dioxide thin films were prepared via the sol-gel method and deposited onto microscopic glass slides using a novel spraying technique, with coatings ranging from 1 to 10. Characterization of the TiO2 thin film coated slides was performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The contribution shows that the coating technique is efficient in covering important areas of the surface and that it is suitable for a multiple coating layers thin film. The SEM imagines show that the surface of the slides increase coverage as the number of layers increases. This is potentially suitable for a mechanized spraying approach to upscaling the production of thin films for advanced oxidation applications.
The article investigates the state of food security of Barabardiya urban municipality, Bardiya. Food security is difficult to assess, with erratic occurrence rates and patterns. Policies should address the behavioral issues that influence our dining decisions. Sociology is particularly well-suited to tackling food security since it is multidisciplinary in nature and encompasses many interdisciplinary ideas in addition to social and economic factors. The research in this study was evaluated using data gathered for my PhD dissertation. The main search engines for finding pertinent data are Google Scholars, JSTOR, Z-library, Research Gate, and the Central Bureau of Statistics of Nepal. From a total of 5981 families, 361 homes were randomly selected for thestudy.89.47 percent of the 361 respondents claimed they did not eat any less than they thought they ought to. Nearly all respondents (96.12%) responded "No," suggesting they were not required to forgo a meal. 63.43 percent of those surveyed claimed that their household never ran out of food. Nearly 93, 4% of those surveyed reported being hungry yet going without food. 96.7 percent of individuals surveyed claimed they went without food for the entire day. According to the investigation’s results, Bardiya has a decent level of food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.