SUMMARYThe paper presents a gradient based topology optimization formulation that allows to solve acousticstructure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic-structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material redistribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modeling approach, the topology optimization procedure is simply implemented as a standard density approach.Several two-dimensional acoustic-structure problems are optimized in order to verify the proposed method.