Light-weight nanocomposites filled with carbon nanotubes (CNTs) are developed for their significant potentials in electromagnetic shielding and attenuation for wide applications in electronics, communication devices, and specific parts in aircrafts and vehicles. Specifically, the introduction of a second phase into/onto CNTs for achieving CNT-based heterostructures has been widely pursued due to the enhancement in either dielectric loss or magnetic loss. In this work, ferroferric oxide (Fe(3)O(4)) was selected as the phase in multiwalled carbon nanotube (MWCNT)-based composites for enhancing magnetic properties to obtain improved electromagnetic attenuation. A direct comparison between the two-phase heterostructures (Fe(3)O(4)/MWCNTs) and polyaniline (PANI) coated Fe(3)O(4)/MWCNTs, namely, three-phase heterostructures (PANI/Fe(3)O(4)/MWCNTs), was made to investigate the interface influences of Fe(3)O(4) and PANI on the complex permittivity and permeability separately. Compared to PANI/Fe(3)O(4)/MWCNTs, Fe(3)O(4)/MWCNTs exhibited enhanced magnetic properties coupled with increased dielectric properties. Interfaces between MWCNTs and heterostructures were found to play a role in the corresponding properties. The evaluation of microwave absorption of their wax composites was carried out, and the comparison between Fe(3)O(4)/MWCNTs and PANI/Fe(3)O(4)/MWCNTs with respect to highly efficient microwave absorption and effective absorption bandwidth was discussed.
SUMMARYThe objective in this paper is to present some developments for the analysis of Navier-Stokes incompressible and compressible fluid flows with structural interactions. The incompressible fluid is discretized with a new solution approach, a flow-condition-based interpolation finite element scheme. The high-speed compressible fluids are solved using standard finite volume methods. The fluids are fully coupled to general structures that can undergo highly non-linear response due to large deformations, inelasticity, contact and temperature. Particular focus is given on the scheme used to couple the fluid media with the structures. The fluids can also be modelled as low-speed compressible or slightly compressible media, which are important models in engineering practice. Some solutions obtained using ADINA are presented to indicate the analyses that can be performed.
Light weight and high efficiency are two key factors for microwave absorption materials. In particular, it is extremely important that absorption materials meet the harsh requirements of thermal environments. In this work, multi-wall carbon nanotubes decorated with ZnO nanocrystals (ZnO@MWCNTs) were synthesized by a mild solution-process synthesis. The high-temperature dielectric and microwave absorption properties of SiO 2 -based composites loaded with ZnO@MWCNTs (ZnO@MWCNTs/SiO 2 ) are investigated in 8.2-12.4GHz and in the 373-673 K temperature range. The imaginary permittivity 3 00 of the composite with 5 wt% loading presents a weak downward trend, while those of the composites with 10 and 15 wt% loading show an upward trend with increasing temperature, which reveals different temperature dependences of 3 00 . The 3 00 for 15 wt% loading is about 10 times that for 5 wt% loading. The maximum loss tangent tan d values of the composites with 10 and 15 wt% loading exceed 0.8, while that of the composites with 5 wt% loading is less than 0.3. High tan d is mainly attributed to the conductivity of ZnO@MWCNTs, which is dominated by the hopping of electrons in the ZnO@MWCNT network, which increases with elevated temperature. The addition of ZnO properly adjusts the complex permittivity to endow the ZnO@MWCNT/SiO 2 composites with highly efficient and thermally stable microwave absorption coupled with a broad attenuation bandwidth, which almost covers the full X-band for RL # À10 dB. A series of outstanding properties of ZnO@MWCNTs imply that it is a promising functional material in the world of microwave absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.