The paper describes a hybrid experimental-numerical technique for elastoplastic crack analysis. It consists of the experimental surface spectrum measurement of plastic strains ahead the crack tip and the boundary element method (BEM). The light scattering method is used to measure the power density spectrum from which the values of plastic strains are obtained by comparison with a calibration experiment on the same material. Plastic strains obtained experimentally are conveniently used for the calculation of unknown boundary displacement or traction vectors by the boundary element method. Instead of an iterative solution of the boundary integral equations in pure numerical solution, the boundary unknowns are computed once for a required loading level. Also asymptotic d~stribution of strains or stresses is not needed in the evaluation of the domain integral for the BEM formulation in the vicinity of the crack tip. Significant CPU time saving is achieved in comparison with the pure BEM solution. The method presented is illustrated by the example for a three point bending specimen with an edge crack.