This paper proposes an adaptive distributed hybrid control approach to investigate the output containment tracking problem of heterogeneous wide-area networks with intermittent communication. First, a clustered network is modeled for a wide-area scenario. An aperiodic intermittent communication mechanism is exerted on the clusters such that clusters only communicate through leaders. Second, in order to remove the assumption that each follower must know the system matrix of the leaders and achieve output containment, a distributed adaptive hybrid control strategy is proposed for each agent under the internal model and adaptive estimation mechanism. Third, sufficient conditions based on average dwell-time are provided for the output containment achievement using a Lyapunov function method, from which the exponential stability of the closed-loop system is analyzed. Finally, simulation results are presented to demonstrate the effectiveness of the proposed adaptive distributed intermittent control strategy.