The finite-time synchronization control is studied in this paper for a class of nonlinear uncertain complex dynamic networks. The uncertainties in the network are unknown but bounded and satisfy some matching conditions. The coupling relationship between network nodes is described by a nonlinear function satisfying the Lipchitz condition. By introducing a simple Lyapunov function, two main results regarding finite-time synchronization of a class of complex dynamic networks with parameter uncertainties are derived. By employing some analysis techniques like matrix inequalities, suitable controllers can be designed based on the obtained synchronization criteria. Moreover, with the obtained control input, the time instant required for the system to achieve finite-time synchronization can be estimated if a set of LMIs are feasible or an assumption on the eigenvalues of some matrices can be satisfied. Finally, the effectiveness of the proposed results is verified by numerical simulation.
This study investigates the finite-time synchronization of uncertain nonlinear complex dynamic networks with time-varying delay. For a class of complex network models with time-varying delay and uncertain system parameters, the time delay changes infrequently, uncertain terms are unknown but bounded, and the matching conditions are satisfied. The coupling relationship between nodes is a nonlinear function with time delay, and the function satisfies the Lipschitz condition. A new criterion for the finite-time synchronization of a class of complex dynamical networks with variable delay is obtained, and the upper bound of the time for the system to achieve synchronization is presented by constructing a suitable Lyapunov-Krasovskii function, designing a nonlinear controller, and combining analysis techniques, such as matrix inequality. Finally, the validity of finite-time synchronization is verified through computer simulation.
This paper investigates the finite-time synchronization problems of complex spatiotemporal networks with time delays and diffusion terms. First, a boundary controller based on Lyapunov stability theory, Wirtinger's inequality, and finite-time analysis is designed. Subsequently, sufficient conditions for finite-time synchronization are obtained, and the setting time of finite-time synchronization is estimated. Finally, a simulation example is given to demonstrate the effectiveness of the obtained result.INDEX TERMS Finite-time synchronization, complex network, time delay, diffusion term, boundary control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.