The multiplication by a constant is a frequently used operation. To implement it on Field Programmable Gate Arrays (FPGAs), the state of the art offers two completely different methods: one relying on bit shifts and additions/subtractions, and another one using look-up tables and additions. So far, it was unclear which method performs best for a given constant and input/output data types. The main contribution of this work is a thorough comparison of both methods in the main application contexts of constant multiplication: filters, signalprocessing transforms, and elementary functions. Most of the previous state of the art addresses multiplication by an integer constant. This work shows that, in most of these application contexts, a formulation of the problem as the multiplication by a real constant allows for more efficient architectures. Another contribution is a novel extension of the shift-and-add method to real constants. For that, an integer linear programming (ILP) formulation is proposed, which truncates each component in the shift-and-add network to a minimum necessary word size that is aligned with the approximation error of the coefficient. All methods are implemented within the open-source FloPoCo framework. 1 With FloPoCo version 4.1.2, try the command flopoco FPExp we=11 wf=53 and look in the produced VHDL for the signal absKLog2.