This paper presents the results of tests on elastomer coatings based on polyurea–polyurethane formulation with increased fire parameters. Coatings modified with flame retardants: bis(phenylphosphate) resorcinol (RDP), trischloropropyl phosphate (TCPP), and aluminum hydroxide (ATH) were tested. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA/DTG) were used to investigate the structure and thermal stability. The effectiveness of resorcinol bis(phenylphosphate) (RDP), tris chloropropyl phosphate (TCPP), and aluminum hydroxide (ATH) on heat release rate (HRR), smoke release rate (RSR), and oxygen consumption was evaluated using cone calorimetry. The cone calorimetry results were correlated with the mechanical properties of the coatings. The cone calorimetry analysis showed suitable organophosphorus flame retardant (FR) performance, significantly decreasing HRR and oxygen consumption. Additionally, 15% TCPP caused a reduction of HRR by over 50%, obtaining 211.4 kW/m2 and pHRR by over 55%, reaching 538.3 kW/m2. However, organophosphorus flame retardants caused a significant deterioration of mechanical properties simultaneously. Introducing a mixture of two FRs (RDP/TCPP) resulted in obtaining a coating with improved fire resistance and maintained good mechanical strength. The polyurea–polyurethane coating, modified with a mixture of two RDP/TCPP retardants (10:5), was simulated for the burning of roof systems. The result of the simulation was assessed positively. Thus, finally, it was confirmed that the proposed polyurea–polyurethane coating achieved the assumed flame retardant level.