Background:
Photodynamic therapy (PDT) is widely recognized as a promising way to cure cancer. However, the limited tumor homing property of currently available drug delivery systems (DDSs) is the bottleneck for the delivery of photodynamic agents.
Purpose:
In our study, we decorated silica nanoparticles (SLN) with cell membrane (CM) derived from SGC7901 cells to construct carrier (CM/SLN) which was able to to specifically target the homogenous SGC7901 cells.
Materials and methods:
Furthermore, the decent drug loading capability of CM/SLN was adopted to load photodynamic agent chlorins e6 (Ce6) to finally construct aDDS suitable for tumor-targeted PDT of gastric cancer.
Results:
The experimental results suggested that CM/SLN/Ce6 was nano-sized particles with good dispersion and stability in physiological conditions. Moreover, due to the modification of CM,CM/SLN/Ce6 could specifically target the homogenous SGC7901 cells both in vitro and in vivo. Most importantly, further in vivo results demonstrated that the CM/SLN/Ce6 showed a better anticancer outcome compared to SLN/Ce6.
Conclusion:
CM/SLN/Ce6 might be a promising platform for effective tumor targeted PDT of gastric cancer.