Background: Cerebrotendinous xanthomatosis (CTX) is a rare recessive genetic disease characterized by disruption of bile acid synthesis due to inactivation of the CYP27A1 gene. Treatment is available in the form of bile acid replacement. CTX is likely underdiagnosed, and prevalence estimates based on case diagnosis are probably inaccurate. Large population-based genomic databases are a valuable resource to estimate prevalence of rare recessive diseases as an orthogonal unbiased approach building upon traditional epidemiological studies. Methods: We leveraged the Hardy-Weinberg principle and allele frequencies from gnomAD to calculate CTX prevalence. ClinVar and HGMD were used to identify high-confidence pathogenic missense variants and to calculate a disease-specific cutoff. Variant pathogenicity was also assessed by the VarSome implementation of the ACMG/AMP algorithm and the REVEL in silico predictor. Results: CTX prevalence estimates were highest in Asians (1:44,407-93,084) and lowest in the Finnish population (1:3,388,767). Intermediate estimates were found in Europeans, Americans, and Africans/African Americans (1:70,795-233,597). The REVEL-predicted pathogenic variants accounted for a greater increase in prevalence estimates for Europeans, Americans, and Africans/African Americans compared with Asians. We identified the most frequent alleles designated pathogenic in ClinVar (p.Gly472Ala, p.Arg395Cys), labeled pathogenic based on sequence consequence (p.Met1?), and predicted to be pathogenic by REVEL (p.Met383Lys, p.Arg448His) across populations. Also, we provide a prospective geographic map of estimated disease distribution based on CYP27A1 variation queries performed by healthcare providers from selected specialties. Conclusions: Prevalence estimates calculated herein support and expand upon existing evidence indicating underdiagnosis of CTX, suggesting that improved detection strategies are needed. Increased awareness of CTX is important for early diagnosis, which is essential for patients as early treatment significantly slows or prevents disease progression.