The results of experiments on electroexplosion titanic foil in water solutions of salts of uranium are presented in this paper. It is shown, that as a result of electroexplosion occurs appreciable (to 20%) distortion of an initial isotope parity of uranium. In the most solution parts, observable isotope distortion occurs in favour of enrichment by 235 U. At the moment of electroexplosion it was not observed an appreciable stream of the neutrons. By means of Cs label and by methods by α, β, γ-spectrometry and mass-spectrometry it have been shown, that isotope distortion occurs at the expense of non-uniform "disappearance" of both isotopes from a solution. The isotope distortion leads to infringement of the 234 Th secular equilibrium in the uranyl solution. The equilibrium infringement between the 234 Th and 234m Pa, i.e. within the proper thorium decay chain, was observed also. The assumption about that the effects are caused of low-energy nuclear reactions at the moment of electroexplosion is suggested.