An overview is presented of our studies on the nature of structural instabilities in relatively complex ionic solids. These are based on parameter-free interionic potentials based on the Gordon-Kim modified electron gas formalism extended to molecular ions.We describe the manner in which there emerge from these studies quite general concepts of "size" and "shape" as structural determinants. In particular, we discuss how these, and the approximate symmetries that they can produce, can provide a relatively simple structure-based explanation of the origins of incommensurate phases in these systems. However, we also emphasize that the existence of such symmetries does nol guarantee an incommensurate phase. This can only be realized if long-range correlations are sufficiently strong to overcome random local disordering. Thus, either the molecular units are partially linked and/or there exist long-range Coulomb interactions between individual units.