Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ribgrass mosaic virus (RMV) and related viruses of the genusTobamovirus(Virgaviridae) are cruciferous plant pathogens that represent a threat to global horticultural systems. In Australia, they are considered exotic biosecurity threats, and an incursion of these viruses would require rapid and strict control efforts. However, current surveillance methods for these viruses are limited. We examined whether RMV and related tobamoviruses could be detected by deep sequencing of gut metatranscriptomes of vertebrate animals and ticks. Using this method, we discovered that RMV, as well as a novel relative of RMV, and two highly diverse novel tobamoviruses are present in Australia. RMV was detected in multiple sites in both the Australian Capital Territory (ACT) and Tasmania, two regions separated by approximately 700km of land and 200km of water. The novel relative of RMV was detected in the ACT and New South Wales (NSW), while the highly divergent novel tobamoviruses were each detected in a single state, NSW and Queensland (QLD). In addition, Tobacco mild green mosaic virus, which is already known to be present in Australia, was detected in QLD using this method. This work highlights the potential utility of metatranscriptomic sequencing of wild animal gut for the surveillance of biosecurity threats to native and agricultural plant species.ImportancePlant viruses can have devastating impacts on global horticulture. Tobamoviruses (familyVirgaviridae, genusTobamovirus) are among the most damaging seed-borne viruses in horticultural crops, and Australia is free of many of the tobamoviruses that cause major crop losses in other countries. These viruses are extremely difficult to eradicate. Consequently, early detection of incursions is key to the control of these viruses in Australia, alongside rapid deployment of eradication and management plans. Current biosecurity surveillance methods in Australia rely on visual inspection, immunological assays, and molecular methods such as screening of imported seed lots. This study introduces a complementary approach that utilises unbiased metatranscriptomic sequencing of animal gut material to detect cryptic plant viruses circulating in nature. Using this approach, we detected five different tobamovirus circulating in Australia, including a virus thought to be exotic and three novel viruses. This unique approach highlights alternative options for surveillance/detection of exotic crop viruses.
Ribgrass mosaic virus (RMV) and related viruses of the genusTobamovirus(Virgaviridae) are cruciferous plant pathogens that represent a threat to global horticultural systems. In Australia, they are considered exotic biosecurity threats, and an incursion of these viruses would require rapid and strict control efforts. However, current surveillance methods for these viruses are limited. We examined whether RMV and related tobamoviruses could be detected by deep sequencing of gut metatranscriptomes of vertebrate animals and ticks. Using this method, we discovered that RMV, as well as a novel relative of RMV, and two highly diverse novel tobamoviruses are present in Australia. RMV was detected in multiple sites in both the Australian Capital Territory (ACT) and Tasmania, two regions separated by approximately 700km of land and 200km of water. The novel relative of RMV was detected in the ACT and New South Wales (NSW), while the highly divergent novel tobamoviruses were each detected in a single state, NSW and Queensland (QLD). In addition, Tobacco mild green mosaic virus, which is already known to be present in Australia, was detected in QLD using this method. This work highlights the potential utility of metatranscriptomic sequencing of wild animal gut for the surveillance of biosecurity threats to native and agricultural plant species.ImportancePlant viruses can have devastating impacts on global horticulture. Tobamoviruses (familyVirgaviridae, genusTobamovirus) are among the most damaging seed-borne viruses in horticultural crops, and Australia is free of many of the tobamoviruses that cause major crop losses in other countries. These viruses are extremely difficult to eradicate. Consequently, early detection of incursions is key to the control of these viruses in Australia, alongside rapid deployment of eradication and management plans. Current biosecurity surveillance methods in Australia rely on visual inspection, immunological assays, and molecular methods such as screening of imported seed lots. This study introduces a complementary approach that utilises unbiased metatranscriptomic sequencing of animal gut material to detect cryptic plant viruses circulating in nature. Using this approach, we detected five different tobamovirus circulating in Australia, including a virus thought to be exotic and three novel viruses. This unique approach highlights alternative options for surveillance/detection of exotic crop viruses.
Pepper (Capsicum spp.; Family: Solanaceae; 2n = 24) is an important crop cultivated worldwide for the consumption of its fresh and dried processed fruits. Pepper fruits are used as raw materials in a wide variety of industrial processes. As a multipurpose vegetable crop, there is a need to increase the yield. However, yield productivity of pepper is severely constrained by infectious plant pathogens, including viruses, bacteria, fungi, and oomycetes. The pepper mild mottle virus (PMMoV) is currently one of the most damaging pathogens associated with yield losses in pepper production worldwide. In addition to impacts on pepper productivity, PMMoV has been detected in domestic and aquatic water resources, as well as in the excreta of animals, including humans. Therefore, PMMoV has been suggested as a potential indicator of domestic water quality. These findings present additional concerns and trigger the need to control the infectious pathogen in crop production. This review provides an overview of the distribution, economic impacts, management, and genome sequence variation of some isolates of PMMoV. We also describe genetic resources available for crop breeding against PMMoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.