The endocytosis of AMPA receptors is thought to be important in the expression of long-term depression (LTD) triggered by NMDA receptor activation. Although signaling pathways necessary for LTD induction have been identified, those responsible for the regulated internalization of AMPA receptors are unknown. Here we show that activation of NMDA receptors alone can trigger AMPA receptor endocytosis through calcium influx and activation of the calcium-dependent protein phosphatase calcineurin. A distinct signaling mechanism mediates the AMPA receptor endocytosis stimulated by insulin. These results demonstrate that although multiple signaling pathways can induce AMPA receptor internalization, NMDA receptor activation enhances AMPA receptor endocytosis via a signaling mechanism required for the induction of LTD.
Regulated growth and arborization of dendritic processes are critical to the formation of functional neuronal networks. Here we identify beta-catenin as a critical mediator of dendritic morphogenesis. We found that increasing the intracellular levels of beta-catenin and other members of the cadherin/catenin complex, namely N-cadherin and alphaN-catenin, enhances dendritic arborization in rat hippocampal neurons, an effect that does not require Wnt/beta-catenin-dependent transcription. Conversely, proteins that sequester beta-catenin decreased dendritic branch tip number and total dendritic branch length. Enhancement of dendritic growth elicited by depolarization requires beta-catenin and increased Wnt release. These results identify Wnt/beta-catenin signaling as an important mediator of dendritic development and suggest that the intracellular level of the cadherin/catenin complex is a limiting factor during critical stages of dendritic morphogenesis.
CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of sense and antisense RNA, and moves together with its mRNA into the SE of scion tissue. CmPP16 possesses the characteristics that are likely required to mediate RNA delivery into the long-distance translocation stream. Thus, RNA may move within the phloem as a component of a plant information superhighway.
wingless and decapentaplegic signal during endoderm induction in Drosophila to regulate expression of the homeotic gene Ultrabithorax. Here, we define a minimal wingless response sequence in the midgut enhancer of Ultrabithorax. We show that this sequence is recognized by the murine transcription factor LEF-1 (lymphocyte enhancer binding factor 1) in a ternary complex with armadillo protein, the cytoplasmic target of the wingless signaling pathway. In stable transformants, transcriptional stimulation of the Ultrabithorax enhancer by LEF-1 depends on armadillo. Furthermore, overexpression of LEF-1 bypasses the need for wingless signaling and causes phenotypes in the midgut, notum, and wing that mimic wingless hyperstimulation. Finally, efficient transcriptional stimulation by LEF-1 in the midgut depends also on the decapentaplegic response sequence and is limited spatially by decapentaplegic signaling. Thus, LEF-1 coordinates inputs from multiple positional signals, consistent with its architectural role in regulating the assembly of multiprotein enhancer complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.