The TerraneChrone ® (LA-ICP-MS) technique has been applied to carry out an integrated study of detrital zircons in sandstones sampled from the basal horizons of the stratotypical Riphean sequence in the Southern Urals, specifically the Navysh and Chudin suites of the Ai Formation of the Burzyan Group in the Bashkir Uplift. The concentrations of trace elements in the detrital zircons suggest that the role of oceanic or marginal-marine complexes among the primary sources of zircons was insignificant, and show a better agreement with the intra-continental rather than passive-margin origin of the Riphean basin, whose basal levels are composed by the Ai Formation. The U/Pb ages of zircons from samples K13-206 and M08-16-1 are generally similar: the Paleoproterozoic zircons predominate (the dominant peaks are actually coincident, 2063 and 2055 Ma), and only a few grains of the Archean age are present. Despite the similar U/Pb ages of the detrital zircons, these two samples considerably differ in their Hf isotopic features and the concentrations of trace elements, which means that the zircons in the studied sandstones are of different geodynamic origin. The characteristics of these zircons can be explained by a model showing the Ai Formation in the Navysh graben that is a rift structure and a predecessor of the Kama-Belaya aulacogene in the inner Volga-Ural region of the Paleoproterozoic supercontinent Columbia. At the initial stage of rifting, the granitoid complexes with a lower total silicic acidity, which composed the graben walls, had been eroded; as a result of erosion, coarse clastic P a l e o g e o d y n a m i c s RESEARCH ARTICLE