2021
DOI: 10.1101/2021.03.16.435597
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Fitness costs and benefits of gene expression plasticity in rice under drought

Abstract: Genome-wide gene expression changes in response to environmental variability have been widely documented, but we lack detailed and comprehensive understanding of the interplay between this form of phenotypic plasticity and natural selection. Selection on expression plasticity may be limited by environment-specific costs, and plasticity may in turn affect selection on baseline expression levels. Here, we address this fundamental issue by measuring selection on drought-induced plasticity of leaf transcripts in f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 127 publications
(196 reference statements)
0
1
0
Order By: Relevance
“…Here, we use an integrative system genomics approach to comprehensively dissect the genome-wide molecular and phenotypic response to salinity stress in rice. This study builds on prior work by our group that examined selection on gene expression in rice in response to normal and dry conditions ( Ćalić et al, 2022 ; Groen et al, 2021 , 2020 ). Using genomic, transcriptomic, and phenotypic datasets obtained from 130 diverse accessions of rice subjected to moderate levels of salinity stress, we (i) explore the selection on gene expression variation under salinity stress, (ii) dissect the genetic architecture of gene expression variation under saline conditions, and (iii) identify genes, molecular pathways, and salt stress response traits as well as associated trade-offs in the saline environment.…”
Section: Introductionmentioning
confidence: 99%
“…Here, we use an integrative system genomics approach to comprehensively dissect the genome-wide molecular and phenotypic response to salinity stress in rice. This study builds on prior work by our group that examined selection on gene expression in rice in response to normal and dry conditions ( Ćalić et al, 2022 ; Groen et al, 2021 , 2020 ). Using genomic, transcriptomic, and phenotypic datasets obtained from 130 diverse accessions of rice subjected to moderate levels of salinity stress, we (i) explore the selection on gene expression variation under salinity stress, (ii) dissect the genetic architecture of gene expression variation under saline conditions, and (iii) identify genes, molecular pathways, and salt stress response traits as well as associated trade-offs in the saline environment.…”
Section: Introductionmentioning
confidence: 99%