To cite this version:Isabelle Coupienne Isabelle Coupienne, Sébastien Bontems, Michael Dewaele, Noemi Rubio, Yvette Habraken, et al.. NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochemical Pharmacology, Elsevier, 2011, 81 (5) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2
AbstractGlioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin.They are very resistant to all current therapies and are associated with a huge rate of recurrence. In most cases, this type of tumor is characterized by a constitutive activation of the nuclear factor-kappaB (NF-B). This factor is known to be a key regulator of various physiological processes such as inflammation, immune response, cell growth or apoptosis. In the present study, we explored the role of NF-B activation in the sensitivity of human glioblastoma cells to a treatment by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a physiological compound widely used in PDT as well as in tumor photodetection (PDD). Our results show that inhibition of NF-κB improves glioblastoma cell death in response to 5-ALA-PDT. We then studied the molecular mechanisms underlying the cell death induced by PDT combined or not with NF-B inhibition. We found that apoptosis was induced by PDT but in an incomplete manner and that, unexpectedly, NF-B inhibition reduced its level. Oppositely PDT mainly induces necrosis in glioblastoma cells and NF-B is found to have anti-necrotic functions in this context. The autophagic flux was also enhanced as a result of 5-ALA-PDT and we demonstrate that stimulation of autophagy acts as a prosurvival mechanism confering protection against PDT-mediated necrosis. These data point out that 5-ALA-PDT has an interesting potential as a mean to treat glioblastoma and that inhibition of NF-B renders glioblastoma cells more sensitive to the treatment.