To cite this version:Isabelle Coupienne Isabelle Coupienne, Sébastien Bontems, Michael Dewaele, Noemi Rubio, Yvette Habraken, et al.. NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochemical Pharmacology, Elsevier, 2011, 81 (5) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 AbstractGlioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin.They are very resistant to all current therapies and are associated with a huge rate of recurrence. In most cases, this type of tumor is characterized by a constitutive activation of the nuclear factor-kappaB (NF-B). This factor is known to be a key regulator of various physiological processes such as inflammation, immune response, cell growth or apoptosis. In the present study, we explored the role of NF-B activation in the sensitivity of human glioblastoma cells to a treatment by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a physiological compound widely used in PDT as well as in tumor photodetection (PDD). Our results show that inhibition of NF-κB improves glioblastoma cell death in response to 5-ALA-PDT. We then studied the molecular mechanisms underlying the cell death induced by PDT combined or not with NF-B inhibition. We found that apoptosis was induced by PDT but in an incomplete manner and that, unexpectedly, NF-B inhibition reduced its level. Oppositely PDT mainly induces necrosis in glioblastoma cells and NF-B is found to have anti-necrotic functions in this context. The autophagic flux was also enhanced as a result of 5-ALA-PDT and we demonstrate that stimulation of autophagy acts as a prosurvival mechanism confering protection against PDT-mediated necrosis. These data point out that 5-ALA-PDT has an interesting potential as a mean to treat glioblastoma and that inhibition of NF-B renders glioblastoma cells more sensitive to the treatment.
Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H2O2 in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis
Glioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin. They are resistant to all current therapies and are associated with a high rate of recurrence. Glioblastoma were previously shown to respond to treatments by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT) mainly by activating a necrotic type of cell death. The receptor-interacting protein 3 (RIP3) has recently been outlined as a key mediator of this caspase-independent form of programmed cell death. In the present study, we analyzed the necrotic mechanism induced by 5-ALA-PDT in human glioblastoma cells and explored the role of RIP3 in this context. Our results show that PDT-induced necrosis is dependent on RIP3, which forms aggregates and colocalizes with RIP1 following photosensitization. We demonstrate that PDT-mediated singlet oxygen production is the cause of RIP3-dependent necrotic pathway activation. We also prove that PDT induces the formation of a pro-necrotic complex containing RIP3 and RIP1 but lacking caspase-8 and FADD, two proteins usually part of the necrosome when TNF-α is used as a stimulus. Thus, we hypothesize that PDT might lead to the formation of a different necrosome whose components, besides RIP1 and RIP3, are still unknown. In most cases, glioblastoma are characterized by a constitutive activation of NF-κB. This factor is a key regulator of various processes, such as inflammation, immune response, cell growth or apoptosis. Its inhibition was shown to further sensitize glioblastoma cells to PDT-induced necrosis, however, no difference in RIP3 upshift or aggregation could be observed when NF-κB was inhibited.
Expression of RIP3 in U2OS cells led to a better survival but also to a death profile change in response to PDT. The apoptotic and autophagic pathways were clearly up-regulated compared to the RIP3-deficient wild type cells. However, induction of necrosis was weaker in the RIP3-U2OS cells. In this context, autophagy is likely to play a protective role against PDT-induced cell death and to allow a better survival of RIP3-U2OS cells. This work also highlights the important role played by RIP3 in the apoptotic pathway, although the modalities are still widely unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.