Mark–recapture sampling schemes are conventional approaches for population size (
N
) estimation. In this paper, we mainly focus on providing fixed-length confidence interval estimation methodologies for
N
under a mark–recapture–mark sampling scheme, where, during the resampling phase, non-marked items are marked before they are released back in the population. Using a Monte Carlo method, the interval estimates for
N
are obtained through a purely sequential procedure with an adaptive stopping rule. Such an adaptive decision criterion enables the user to “learn” with the subsequent marked and newly tagged items. The method is then compared with a recently developed accelerated sequential procedure in terms of coverage probability and expected number of captured items during the resampling stage. To illustrate, we explain how the proposed procedure could be applied to estimate the number of infected COVID-19 individuals in a near-closed population. In addition, we present a numeric application inspired on the problem of estimating the population size of endangered monkeys of the Atlantic forest in Brazil.