Under the squared error loss plus linear cost of sampling, we revisit the minimum risk point estimation (MRPE) problem for an unknown normal mean when the variance 2 also remains unknown. We begin by defining a new class of purely sequential MRPE methodologies based on a general estimator W n for satisfying a set of conditions in proposing the requisite stopping boundary. Under such appropriate set of sufficient conditions on W n and a properly constructed associated stopping variable, we show that (i) the normalized stopping time converges in law to a normal distribution (Theorem 3.3), and (ii) the square of such a normalized stopping time is uniformly integrable (Theorem 3.4). These results subsequently lead to an asymptotic second-order expansion of the associated regret function in general (Theorem 4.1). After such general considerations, we include a number of substantial illustrations where we respectively substitute appropriate multiples of Gini's mean difference and the mean absolute deviation in the place of the general estimator W n . These illustrations show a number of desirable asymptotic first-order and secondorder properties under the resulting purely sequential MRPE strategies. We end this discourse by highlighting selected summaries obtained via simulations.
The gamma distribution is a flexible right-skewed distribution widely used in many areas, and it is of great interest to estimate the probability of a random variable exceeding a specified value in survival and reliability analysis. Therefore, the study develops a fixed-accuracy confidence interval for P(X > c) when X follows a gamma distribution, Γ(α, β), and c is a preassigned positive constant through: 1) a purely sequential procedure with known shape parameter α and unknown rate parameter β; and 2) a nonparametric purely sequential procedure with both shape and rate parameters unknown. Both procedures enjoy appealing asymptotic first-order efficiency and asymptotic consistency properties. Extensive simulations validate the theoretical findings. Three real-life data examples from health studies and steel manufacturing study are discussed to illustrate the practical applicability of both procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.