In this paper, we investigate the conditions on the control mappings $\psi ,\varphi :(0,\infty )\rightarrow \mathbb{R}$
ψ
,
φ
:
(
0
,
∞
)
→
R
that guarantee the existence of the fixed points of the mapping $T:X\rightarrow P(X)$
T
:
X
→
P
(
X
)
satisfying the following inequalities: $$ \psi \bigl(H(Tx,Ty)\bigr)\leq \varphi \bigl(d(x,y)\bigr) \quad \forall x,y\in X, \text{provided that } H(Tx,Ty)>0, $$
ψ
(
H
(
T
x
,
T
y
)
)
≤
φ
(
d
(
x
,
y
)
)
∀
x
,
y
∈
X
,
provided that
H
(
T
x
,
T
y
)
>
0
,
and $$ \psi \bigl(H(Tx,Ty)\bigr)\leq \varphi \bigl(A(x,y)\bigr) \quad \forall x,y\in X, \text{provided that } H(Tx,Ty)>0, $$
ψ
(
H
(
T
x
,
T
y
)
)
≤
φ
(
A
(
x
,
y
)
)
∀
x
,
y
∈
X
,
provided that
H
(
T
x
,
T
y
)
>
0
,
where $A(x,y)=\max \{ d(x,y), d(x,Tx), d(y,Ty), (d(x,Ty) +d(Tx,y))/2 \} $
A
(
x
,
y
)
=
max
{
d
(
x
,
y
)
,
d
(
x
,
T
x
)
,
d
(
y
,
T
y
)
,
(
d
(
x
,
T
y
)
+
d
(
T
x
,
y
)
)
/
2
}
, and $(X, d)$
(
X
,
d
)
is a metric space. The obtained fixed point results improve many earlier results on the set-valued contractions. As an application, we consider the existence of the solutions of an FDE.