Carbon is a unique chemical element whose different forms or allotropes are inexhaustible in number. It has been in use since antiquity and now, the possibility of manipulating the lattice structure of its crystalline allotropes, offers it unlimited advanced applications. This review aims at demonstrating certain aspects of engineering material in different applications. Various structures of some identified allotropes carbon, respective properties and uses of the allotropes were reviewed. Amorphous carbon materials find application mainly as fuels and sometimes as parent materials for synthesis of more useful chemicals. Their limited application was ascribed to their unstable irregular patterned structure which cannot be manipulated easily to meet further needs. Structurally, carbon exists in the sp3 and sp2 hybridized state in the crystal lattice of its crystalline allotropes. Due to the salient features of its allotropes, carbon finds application in energy generation and storage, optics, electronics, opto-electronics, electro-catalysis, corrosion control, bio-sensing (diagnostics), sensing, agriculture, water treatment, making of composite materials with unique properties and more. There is no limit to the application of carbon. It was recommended that renewable and sustainable alternative precursors for synthesis of carbon nanomaterials with crystal growth control be sought for.