Metrics & MoreArticle Recommendations * sı Supporting Information
CONSPECTUS:The study discussed herein describes the synthesis of halogenated chalcones as potential chemotherapeutics. The synthesis work was conducted by undergraduate students participating in an Organic Chemistry II laboratory course at Tuskegee University, while the biological assays were conducted by students enrolled in a Molecular Biology I laboratory course. Chalcones were synthesized via aldol condensation and purified from hot ethanol. The impetus for the work was the fact that Tuskegee University sits positioned within the Black Belt of Alabama which, in addition to being an area of fertile soil and excellent farmland, is also an area rife with health disparities that particularly affect African-Americans. Breast cancer, specifically triple-negative breast cancer, affects African-American women at a higher rate than any other ethnic group. The work described herein addresses a practical problem [teaching undergraduate students about the interface of synthetic techniques, synthesis of specific classes of compounds, functional groups, and their relation to biological activity], as well an existential problem [the prevalence of breast cancer among African-American women, and the need to develop targeted treatments]. One of the chief aims of this approach of integrating these ideas into our laboratory courses was to facilitate the understanding of translational science, i.e. taking chalcones from benchtop to potential therapies for breast cancer. Another aim of the current approach was to, in essence, create a research problem based course and concomitantly use the results of the experiments performed in the course as a way to address the dearth of research funding that HBCUs typically receive. The pharmacological activities of chalcones and their derivatives are well documented. They are an important class of natural products that occur in edible plant derivatives such as spices, teas, fruits and various vegetables. In vitro studies have shown that chalcones inhibit proliferation of breast cancer cells by inducing apoptosis and blocking cell progression. The synthesis of chalcones with aromatic substituents has been investigated, and electron rich chalcones, i.e., chalcones with donors attached to the aromatic rings, have been studied extensively. The effect that adding electron withdrawing groups to the chalcone structural motif has on the antiproliferation ability of chalcones had been only minimally investigated at the time that our studies were being conducted. We examined the introduction of chlorine to the aromatic system of the chalcone and how these electron withdrawing substituents affect the chalcone's antiproliferative ability. It was discovered that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one inhibited MDA-MB-231 cell progression in a dose dependent manner and outperformed the unsubstituted (E)-1,3diphenyl-2-propen-1-one (1) at concentrations ranging from 0 μg/mL to 20 μg/mL. Cell death was determined by MTT assay.