Cellulose extractions from wheat straw via hydrochloric, nitric, and sulfuric acid hydrolysis methods were carried out. X-ray diffraction spectral analyses reveal that depending on the acid conditions used the structure of the cellulose exhibited a mixture of polymorphs (i.e., CI and CIII cellulose phases). In addition, the percent crystallinity, diameter, and length of the cellulose fibers varied tremendously as determined by X-ray diffraction and scanning electron microscopy. Thermal gravimetric analysis measurements revealed that the thermal stability of the extracted cellulose varied as a function of the acid strength and conditions used. Scanning electron microscopy analysis revealed that the aggregation of cellulose fibers during the drying process is strongly dependent upon the drying process and strength of the acids used.
[reaction: see text] Methyl 3-(trialkylsilanyloxy)-2-diazo-3-butenoate undergoes Lewis acid-catalyzed Mukaiyama aldol addition with aromatic and aliphatic aldehydes in the presence of low catalytic amounts of Lewis acids in nearly quantitative yields. Scandium(III) triflate is the preferred catalyst and, notably, addition proceeds without decomposition of the diazo moiety. Diazoacetoacetate products from reactions with aromatic aldehydes undergo rhodium(II)-catalyzed ring closure to cyclobutanones with high diastereocontrol. Examples of complimentary Mannich-type addition reactions with imines are reported.
[reaction: see text] A series of experiments are described that suggest that the Rh-catalyzed reductive aldol reaction proceeds by addition of a Rh(I) hydride, generated in situ, to the reacting acrylate followed by a stereochemistry-controlling aldol addition reaction. On the basis of this hypothesis, reaction conditions are engineered that allow for increased substrate scope.
The products from dirhodium(II) acetate-catalyzed reactions between diazocarbonyl compounds and a series of benzaldehydes demonstrate the extent of competition between intramolecular and intermolecular trapping of carbonyl ylide intermediates and the electronic effects that govern these transformations. With dimethyl diazomalonate, competition exists between dioxolane and epoxide formation so that with p-anisaldehyde only epoxide formation is observed and with p-nitrobenzaldehyde only 1,3-dioxolane products are formed. With methyl diazoacetoacetate, intramolecular trapping of the intermediate carbonyl ylide results in the sole production of dioxolenes. However, the vinyldiazoacetate analogue of methyl diazoacetoacetate, as its tert-butyldimethlsilyloxy derivative, only produces epoxides in its reactions with substituted benzaldehydes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.