B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pulldown. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of The structures of BCL6 BTB domain bound to compounds 1, 2 and 9 have been deposited in the Protein Data Bank with PDB accession codes 6ew6, 6ew7 and 6ew8, respectively.
AUTHOR INFORMATIONCorresponding Author
Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand-protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven.
Synaptic
dysfunction is a pathological feature in many neurodegenerative
disorders, including Alzheimer’s disease, and synaptic loss
correlates closely with cognitive decline. Histone deacetylases (HDACs)
are involved in chromatin remodeling and gene expression and have
been shown to regulate synaptogenesis and synaptic plasticity, thus
providing an attractive drug discovery target for promoting synaptic
growth and function. To date, HDAC inhibitor compounds with prosynaptic
effects are plagued by known HDAC dose-limiting hematological toxicities,
precluding their application to treating chronic neurologic conditions.
We have identified a series of novel HDAC inhibitor compounds that
selectively inhibit the HDAC–co-repressor of repressor element-1
silencing transcription factor (CoREST) complex while minimizing hematological
side effects. HDAC1 and HDAC2 associate with multiple co-repressor
complexes including CoREST, which regulates neuronal gene expression.
We show that selectively targeting the CoREST co-repressor complex
with the representative compound Rodin-A results in increased spine
density and synaptic proteins, and improved long-term potentiation
in a mouse model at doses that provide a substantial safety margin
that would enable chronic treatment. The CoREST-selective HDAC inhibitor
Rodin-A thus represents a promising therapeutic strategy in targeting
synaptic pathology involved in neurologic disorders.
Stabilization
of protein–protein interactions (PPIs) holds
great potential for therapeutic agents, as illustrated by the successful
drugs rapamycin and lenalidomide. However, how such interface-binding
molecules can be created in a rational, bottom-up manner is a largely
unanswered question. We report here how a fragment-based approach
can be used to identify chemical starting points for the development
of small-molecule stabilizers that differentiate between two different
PPI interfaces of the adapter protein 14-3-3. The fragments discriminately
bind to the interface of 14-3-3 with the recognition motif of either
the tumor suppressor protein p53 or the oncogenic transcription factor
TAZ. This X-ray crystallography driven study shows that the rim of
the interface of individual 14-3-3 complexes can be targeted in a
differential manner with fragments that represent promising starting
points for the development of specific 14-3-3 PPI stabilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.