Protein lysine methyltransferases are important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine to specific acceptor lysines on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate nonhistone protein substrates, revealing an additional mechanism to regulate cellular physiology. The oncogenic protein SMYD2 represses the functional activities of the tumor suppressor proteins p53 and Rb, making it an attractive drug target. Here we report the discovery of AZ505, a potent and selective inhibitor of SMYD2 that was identified from a high throughput chemical screen. We also present the crystal structures of SMYD2 with p53 substrate and product peptides, and notably, in complex with AZ505. This substrate competitive inhibitor is bound in the peptide binding groove of SMYD2. These results have implications for the development of SMYD2 inhibitors, and indicate the potential for developing novel therapies targeting this target class.
Cathepsin B is a member of the papain superfamily of cysteine proteases and has been implicated in the pathology of numerous diseases, including arthritis and cancer. As part of an effort to identify potent, reversible inhibitors of this protease, we examined a series of dipeptidyl nitriles, starting with the previously reported Cbz-Phe-NH-CH(2)CN (19, IC(50) = 62 microM). High-resolution X-ray crystallographic data and molecular modeling were used to optimize the P(1), P(2), and P(3) substituents of this template. Cathepsin B is unique in its class in that it contains a carboxylate recognition site in the S(2)' pocket of the active site. Inhibitor potency and selectivity were enhanced by tethering a carboxylate functionality from the carbon alpha to the nitrile to interact with this region of the enzyme. This resulted in the identification of compound 10, a 7 nM inhibitor of cathepsin B, with excellent selectivity over other cysteine cathepsins.
Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology. SMYD2 is reported to be an oncogenic methyltransferase that represses the functional activity of the tumor suppressor proteins p53 and RB. HTS screening led to identification of five distinct substrate-competitive chemical series. Determination of liganded crystal structures of SMYD2 contributed significantly to "hit-to-lead" design efforts, culminating in the creation of potent and selective inhibitors that were used to understand the functional consequences of SMYD2 inhibition. Taken together, these results have broad implications for inhibitor design against KMTs and clearly demonstrate the potential for developing novel therapies against these enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.