Electric vehicles (EVs) can provide important flexibility to the integration of local energy generation in buildings. Although most studies considering the integration of EVs and buildings are focused on residential buildings, the number of publications regarding large buildings, in particular, public buildings (PBs), has increased. However, the quantity of studies regarding the integration of EVs and PBs is still limited. Additionally, there are no review studies approaching the integration of EVs and buildings in one single framework. In this sense, this review aims to address the challenges and trends associated with optimizing the charging of EVs in PBs by conducting a systematic review of the existing literature. As contributions, this work develops a review that approaches the integration of EVs and PBs using multiple strategies and structures, presents an integrated picture of the technical and economic constraints, and addresses the future trends and research perspectives related to the subject. Through the use of an open-access search engine (LENS), a cluster of 743 publications was analyzed using two strings and a timeframe restriction. The most important contributions regarding optimization strategies and their evolution are presented, followed by a comparison of the findings with other review papers. As key findings, technical and economic constraints are identified (uncertainties of driving behavior and local generation, battery degradation, “injection tariffs”, etc.), as are future trends and perspectives (local generation legislation, incentives for purchasing EVs, energy communities, etc.).